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ABSTRACT 

Multiple Longest Common Subsequence (MLCS) refers to find the Longest Common Subsequence 

between two or more sequences. Identifying MLCS in DNA sequences is helpful to generate Phylogenetic tree, 

Motif identification and DNA sequence alignment.  The existing Dynamic Programming based MLCS algorithms 

require exponential time and space complexity. The statistical method Hidden Markov Model (HMM) helps to 

identify highly aligned sequences. MLCS identification is nothing but identifying the longest aligned subsequence 

among the DNA sequences. This paper proposes a HMM based MLCS algorithm for DNA sequences. The 

proposed HMM_MLCS identifies MLCS with linear time and space complexity. 

KEY WORDS: Longest Common Subsequence,   Hidden Markov Model (HMM), Dynamic Programming, Aligned 

Sequences. 

1. INTRODUCTION 

    DNA sequences are the linear arrangements of the four chemicals namely Adenine (A), Thymine (T), 

Cytosine (C) and Guanine (G) in any order. New DNA sequences are found by the existing ones. The existing 

sequences can transfer information about structure/functionalities into the new sequences. If two sequences are 

related, then they are called as homologous/alignment. Multiple Longest Common Subsequence (MLCS) 

(Hirschberg, 1975; 1977; Rick, 1994; Kumar and Rangan, 1987) refers to find the Longest Common Subsequence 

between two or more sequences. Identifying MLCS is useful to find homologous between DNA sequences. 

Homologous sequences are helpful to generate Phylogenetic tree, Motif identification and DNA drug design 

(Trifonov and Berezovsky, 2003; Sankoff, 1972; Dayhoff, 1969).  

 The statistical method, HMM (Fujiwara, 1994; Rabiner and Juang, 1986; Stolcke and Omohundro, 1993) 

is used to model a sequence or a family of sequences. HMM is useful for sequence alignment (Smith and Waterman, 

1981; Vingron, 1996). HMM model generate current character of the sequence with respect to the probability of 

the previous character of the sequence. This paper discusses about a HMM based MLCS algorithm for DNA 

sequences. The existing Dynamic Programming based MLCS require exponential time and space complexity. The 

proposed HMM_MLCS identifies MLCS with linear time and space complexity. 

 This paper is organized as given below. Section 2 defines MLCS materials and discusses about various 

existing methods with their time and space complexities. Section 3 proposes a new algorithm called HMM_MLCS() 

to identify MLCS with an illustration.  Section 4 discusses about the implementation and analyses the proposed   

algorithm HMM_MLCS(). Section 5 provides the conclusion and future research direction. 

2. MATERIALS AND METHODS  

2.1. MLCS Problem Definition: A sequence Z = < z1, z2…. zn > is called Multiple Longest Common Subsequence 

(MLCS) of other sequences A = < a1, a2…. an >, B = < b1, b2…. bn > ……. K = < k1, k2…. kn > and A, B….K are 

the super sequences of Z denoted as Z ⊆ {A, B, …. K },  if there exists integers 1 ≤ j1 ≤ j2 … ≤ jn ≤ m such that Z1 

⊆ { aj1, bj1, cj1 … kj1}, Z2 ⊆ { aj2, bj2, cj2 … kj2} ….Zn ⊆ { ajn, bjn, cjn … kjn} ≤ m 

     Thus MLCS is a longest common subsequence of more than two sequences where event e1 occurs before 

e2, e2 occurs before e3, etc. Let A = a1 a2 a3....am  and B = b1 b2 …... bn are the two sequences. And ‘Z’ is the Longest 

Common Subsequence (LCS) between A and B, which is defined as z1z2 . ....zk. 

Table.1.Sample DNA sequences 

Sequence    

             

         

    Position# 

1 2 3 4 5 6 7 8 9 10 

A C T G C T C A C G C 

B C A A C T C T C A C 

                                 The LCS of sample DNA sequences in Table 1 is “C T C A C”. 

2.2. Existing LCS Methods: The major three existing methods to identify MLCS are a) Dynamic Programming 

Method (DP), b) Dominant Point Method, c) Cache-Oblivious Method.  

https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
https://en.wikipedia.org/wiki/Less_than_or_equal_to
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 2.2.1. Dynamic Programming Method: Dynamic programming (DP) method ( (Akutusu, 2000), (Apostolico, et 

al., 1992), (Masek & Paterson, 1980) and (Bentley, 1980) ) defines the current stage from the previous stage. The 

score matrix for DP method is defined in equation. 

𝐿[𝑖, 𝑗] = {

0                                                    𝑖𝑓      𝑖 𝑜𝑟 𝑗 = 0,

𝐿[𝑖 − 1, 𝑗 − 1] + 1,                    𝑖𝑓  𝑠1[𝑖] = 𝑠2[𝑗]

𝑚𝑎𝑥(𝐿[𝑖, 𝑗 − 1], 𝐿 [𝑖 − 1, 𝑗]), 𝑖𝑓  𝑠1[𝑖] ≠ 𝑠2[𝑗]
  

                                                                               

The score matrix for the sample DNA sequences in Table 1 is shown in Table 2.  

Table.2.Score Matrix L[i,j] for sample Data  

  j 

↓ 

0 

j 

↓ 

1 

j 

↓ 
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j 
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J 

↓ 
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j 

↓ 
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j 

↓ 

6 

j 

↓ 

7 

j 

↓ 

8 

J 

↓ 

9 

j 

↓ 

10 

   C A A C T C T C A C 

i→0  0 0 0 0 0 0 0 0 0 0 0 

i→1 C 0 1 1 1 1 1 1 1 1 1 1 

i→2 T 0 1 1 1 1 2 2 2 2 2 2 

i→3 G 0 1 1 1 1 2 2 2 2 2 2 

i→4 C 0 1 1 1 2 2 3 3 3 3 3 

i→5 T 0 1 1 1 1 3 3 4 4 4 4 

i→6 C 0 1 1 1 2 2 4 4 5 5 5 

i→7 A 0 1 2 2 2 2 4 4 5 6 6 

i→8 C 0 1 2 2 3 3 3 4 5 6 7 

i→9 G 0 1 2 2 3 3 3 4 5 6 7 

i→10 C 0 1 2 2 3 3 4 4 5 6 7 

The identification of MLCS by using DP method contains two steps. In the first step score matrix is formed. 

Subsequently, in the second step score matrix is traced to identify the required MLCS. Thus, if “n” is the length of 

the sequences and “d” is the number of sequences then time and space complexity to identify MLCS is O(nd).  

2.2.2. Dominant Point Method: The score matrix defined in Eq. 1 shows that MLCS occurs at the first occurrence 

of matching character’s position in the score matrix. These positions are called as dominant points. i.e. MLCS is 

the subset of the dominant points. Instead of tracing the entire score matrix to find MLCS it is enough to find the 

subset of dominant point set ( (Wang, et al., 2011), (Hakata & Imai, 1998) and (Kung, et al., 1975) ). This reduces 

the time and space complexity to identify MLCS. 

 Dominant points set D, for the sample DNA sequences in Table 1 is { (1,1) (2,5), (4,4), (4,6), (5,7), (6,6), 

(6,8), (7,9), (8,10)}. The subset of “D” is {(4,6), (5,7), (6,8), (7,9), (8,10)}is the required MLCS, by eliminating 

event which are not following the order of e1 < e2…. < ek. i.e. for instance (2,5) is not less than (4,4). 

 If “d” is the number of sequences, “n” is the length of sequences, “D” is the size of dominant point set, and 

“N” is the number of levels, then the Time complexity is O (d N logd-2 n). And the space complexity of this 

algorithm is O ( | D | d + n | ∑ | d ). 

2.2.3. Cache Oblivious methodology: The main difficulty in MLCS identification is transfer of large number of 

sequence data between main and cache memory. This delays the execution time. This method recursively apply 

divide and conquer method on score matrix by keeping track of the boundary positions of the sub-matrices. This 

reduces the transfer rate of data between main and cache memory (Chowdhury, 2007) ).    

 If ‘n’ is the length of sequence and ‘d’ is the number of sequences, then the time complexity of the Cache 

Oblivious DP algorithm is O( nd )  and the space complexity is O (nd - 1). The time and space complexity of this 

method is exponential. 

2.3.  HMM model and the proposed HMM_MLCS Algorithm 

2.3.1. Hidden Markov Model (HMM): The statistical method, HMM is defined by  

a) A set of states Q 

b) A set of transitions, where transition probability 

akl = P(𝜋i = l / 𝜋i-1 = k), is the probability of transitioning from state k to state l for ki l ε Q 

c) An emission probability,  

     ek(b) = P(xi = b / 𝜋I = k), for each state k and each symbol b where ek(b) is the probability of seeing b in state k. 

The sum of all emission probabilities at a given state must equal to 1, ie. ∑ 𝑒𝑏 k = 1for each state k. The 

HMM model helps to identify highly aligned sequences where the log_odd_ratio of highly aligned sequences 

should be closer to 0. As MLCS identification is nothing but identifying the longest aligned subsequence among 

the DNA sequences. Thus HMM model helps to identify MLCS in a linear time complexity.  

Two sample DNA sequences considered for our illustration are listed out in Table 3.  
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Table.3.Sample DNA sequences 

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Seq1 T A A T C G A A C T A C A G G A 

Seq2 A T C G G A T C A T A T C G C C 

 

Positions 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

Seq1 T A G A T C G A A T G G T G G 

Seq2 G A A C T A C A G G T T A A C 

The HMM model for the Seq_1 in Table 3 is as shown in Figure 1. Transition probabilities of possible 

sixteen len_2 sub_patterns for Seq_1 in Table 3 are listed out in Table 4. The HMM model for the Seq_2 in Table 

3 is as shown in Figure 2. Transition probabilities of possible sixteen len_2 sub_patterns of Seq_2 in table 3 are 

listed out in Table 5. The sum of emission probability for the possible 16 states is1. 

2.3.2. Proposed HMM_MLCS algorithm: The proposed HMM_MLCS algorithm contains three steps (i) 

calculate the possible sixteen len_2 probabilities for the DNA sequences (ii) calculate the log_odd_ratio, i.e. the 

alignment ratio for all sub_patterns of assumed len_10 (iii) lists out the possible MLCS or highly aligned 

sub_patterns whose log_odd_ratio < 0.5. The pseudo code for proposed HMM_MLCS is as shown in Figure 3. 

  
Fig.1.HMM Model for Seq_1 Fig.2.HMM Model for Seq_2 

//HMM_MLCS algorithm to find LCS 

Procedure HMM_MLCS() 

{ 

// s1, s2 are the sequences of length_n 

PS1_AA, PS1_AT, PS1_AG, PS1_GG are the 16  

possible probabilities for the length_2 pattern in 

Seq_1 

PS2_AA, PS2_AT, PS2_AG,  PS1_GG are the 

16  

possible probabilities for the length_2 pattern in 

Seq_2 

Splitting the sequence s1 into consecutive 

sub_patterns X, of  assumed len_10  

For i = 0 to n-1 

   { 

       X = s1.substring (i, i+9); 

// Calculate log_odd_ratio for X, by splitting X 

into   

// len_2 sub_patterns (pattern_len_2)  

          For j = 0 to 8 

           { 

                pattern_len2 = X.substring(j, j+1); 

                log_odd_ratio = 0; 

                switch (pattern_len2) 

                  { 

                     Case “AA” :  

                             { y = log (PS1_AA/PS2_AA); 

                       log_odd_ratio = log_odd_ratio + y; 

                              break;} 

Case “AT” :  

                             { y = log (PS1_AT/PS2_AT); 

                        log_odd_ratio = log_odd_ratio + y; 

                              break;} 

                    Case “AC” :  

                             { y = log (PS1_AC/PS2_AC); 

                        log_odd_ratio = log_odd_ratio + y; 

                              break;} 

                     Case “AG” :  

                             { y = log (PS1_AG/PS2_AG); 

                       log_odd_ratio = log_odd_ratio + y; 

                              break;} 

           Case “GG” :  

                             { y = log (PS1_GG/PS2_GG); 

                        log_odd_ratio = log_odd_ratio + y; 

                              break;} 

                           } End Switch case 

                         } End for j 

//Identifying MLCS such that log_odd_ratio of 

MLCS  

// closer to 0 

If ( log_odd_ratio < 0.5) { 

        Print (“possible MLCS:” X) 

        Log_odd_ratio = 0; 

     } end if 

} end for  i 

} End HMM_MLCS 

Fig.3.Pseudo code for proposed HMM_MLCS 

 

A T 

C G 

A T 

C G 
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Table.4.Transition probabilities of seq_1 Table.5.Transition probabilities of seq_2 

 A T C G 

A 0.1 0.13 0.06 0.06 

T 0.1    0 0.06 0.06 

C 0.03 0.03 0 0.06 

G 0.13 0.03 0 0.1 
 

 A T C G 

A 0.06 0.13 0.1 0.03 

T 0.1  0.03 0.1 0 

C 0.06 0.03 0.03 0.1 

G 0.06 0.03 0.03 0.06 
 

The proposed HMM_MLCS applies the HMM model for the DNA states Q = { A, T, C, G } and the 

possible sixteen len_2 transition states S = { AA, AT, AC, AG….. GG }. As DNA sequences are the linear 

arrangement of A, T, C, G in any order, there will be only  16 (=24) possible combinations (Permutations with 

Repetition) of len_2 sub_patterns.  

3.  ANALYSIS OF HMM_MLCS 

3.1. Illustration of HMM_MLCS algorithm: In this section, the proposed HMM_MLCS has been   illustrated   

for   the   sample   MLCS   pattern         X = { CGAACTACAGG } with the sample DNA sequences in table 3.  

The consecutive len_2 sub_patterns of X and their log_odd_ratio values are listed in Table 6. 

Table 6: Consecutive len_2 patterns of X and log_odd_ratio 

len_2 patterns CG GA AA AC CT TA AC CA AG GG 

Log_odd_ratio -0.2 0.37 0.2 -0.22 -0.22 -0 .3 0.3 0.22 0.37 -0.22 

                                     Sum of log_odd_ratio of pattern X is approximately 0.1. 

3.2. Time and Space complexity: If “n” is the length of the sequence, then to calculate probability of sixteen 

sub_patterns of len_2 is   (n - 2).  If “l” is the assumed length of MLCS, then the number of splitted sub_patterns 

is (n - l). Each ( n – l ) patterns require ( l – 1 ) len_2 sub_patterns to calculate log_odd_ratio. Thus, the time 

complexity is defined as 

                     T ( n ) = ( n – 2 ) + ( ( n – l ) * ( l – 1 ) ) , where n, l > 0 

                = ( n – 2 ) + ( n l – l2 – l )  = O ( n  ), The space complexity of proposed HMM_MLCS is O (n ).  

3.3. Implementation details and Results: This algorithm has been implemented using Java on a Windows 10 

machine with i7 Intel processor 2.33 GHZ, 16 GB RAM. The runtime results of HMM_MLCS algorithm for the 

given sequences in Table 3 is as shown in Table 7. 

Table.7.Runtime results of HMM_MLCS algorithm 

PatternID Position Pattern log_odd_ratio 

1 1 - 10 TAATCGAACTA -0.051152522 

2 2 - 11 AATCGAACTAC -0.352182518 

3 3 - 12 ATCGAACTACA -0.227243782 

4 4 - 13 TCGAACTACAG -0.051152522 

5 5 - 14 CGAACTACAGG 0.425968732 

6 6 - 15 GAACTACAGGA 0.602059991 

7 7 - 16 AACTACAGGAT 0.301029996 

8 8 - 17 ACTACAGGATA 0.425968732 

9 9 - 18 CTACAGGATAG 0.903089987 

10 10 - 19 TACAGGATAGA 0.903089987 

11 11 - 20 ACAGGATAGAT 0.726998728 

12 12 - 21 CAGGATAGATC 0.726998728 

13 13 - 22 AGGATAGATCG 1.329058719 

14 14 - 23 GGATAGATCGA 1.204119983 

15 15 - 24 GATAGATCGAA 1.028028724 

16 16 - 25 ATAGATCGAAT Infinity 

17 17 - 26 TAGATCGAATG Infinity 

18 18 - 27 AGATCGAATGG Infinity 

19 19 - 28 GATCGAATGGT Infinity 

20 20 - 29 ATCGAATGGTG Infinity 

21 21 - 30 TCGAATGGTGG Infinity 
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 The graphical representation of consecutive len_10 sequence positions and their log_odd_ratio are as 

shown in Figure 4. 

 
Fig.4.HMM_MLCS runtime results 

 

The runtime results show that log_odd_ratio values for the patternID-5 to patternID-8 is closer to 0.5. i.e. 

MLCS lies between positions 5 to positions 18 of seq_1. And also Table 7 shows that sequence of len_30 requires 

only 21 sub-patterns of len_10. And each of the len_10 patterns requires ( 10 – 1= 9) len_2 patterns to calculate 

log_odd_ratio values. Thus proposed HMM_MLCS identifies MLCS in linear time and space complexity.  

 

5. CONCLUSION AND FUTURE RESEARCH DIRECTION  

      The existing DP based algorithms to identify MLCS require exponential space and time complexity. As 

DNA sequences are of million in length, these algorithms are quite expensive. The statistical method Hidden 

Markov Model (HMM) is suitable and is proven for the identification of highly aligned sequences. MLCS is also 

a highly aligned subsequence. HMM based approach identifies MLCS in linear time and space complexity than the 

score matrices of DP methods.  

  The proposed algorithm HMM_MLCS defines four states and sixteen len_2 transition states to identify 

MLCS in linear space and time complexity. In future, HMM_MLCS can be improved by increasing the transition 

states from sixteen to two fifty six and execute them using Hadoop Map-reduce programming methodology. This 

approach will further reduce the time and space complexity for the large DNA sequences. 
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